Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms (1811.11141v2)

Published 27 Nov 2018 in cs.DC

Abstract: Distributed synchronous stochastic gradient descent has been widely used to train deep neural networks on computer clusters. With the increase of computational power, network communications have become one limiting factor on system scalability. In this paper, we observe that many deep neural networks have a large number of layers with only a small amount of data to be communicated. Based on the fact that merging some short communication tasks into a single one may reduce the overall communication time, we formulate an optimization problem to minimize the training iteration time. We develop an optimal solution named merged-gradient WFBP (MG-WFBP) and implement it in our open-source deep learning platform B-Caffe. Our experimental results on an 8-node GPU cluster with 10GbE interconnect and trace-based simulation results on a 64-node cluster both show that the MG-WFBP algorithm can achieve much better scaling efficiency than existing methods WFBP and SyncEASGD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shaohuai Shi (47 papers)
  2. Xiaowen Chu (108 papers)
  3. Bo Li (1107 papers)
Citations (83)

Summary

We haven't generated a summary for this paper yet.