Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Correcting the Common Discourse Bias in Linear Representation of Sentences using Conceptors (1811.11002v1)

Published 17 Nov 2018 in cs.CL, cs.LG, and stat.ML

Abstract: Distributed representations of words, better known as word embeddings, have become important building blocks for natural language processing tasks. Numerous studies are devoted to transferring the success of unsupervised word embeddings to sentence embeddings. In this paper, we introduce a simple representation of sentences in which a sentence embedding is represented as a weighted average of word vectors followed by a soft projection. We demonstrate the effectiveness of this proposed method on the clinical semantic textual similarity task of the BioCreative/OHNLP Challenge 2018.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.