Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Facilitating the Manual Annotation of Sounds When Using Large Taxonomies (1811.10988v1)

Published 21 Nov 2018 in cs.IR, cs.HC, cs.LG, cs.SD, and eess.AS

Abstract: Properly annotated multimedia content is crucial for supporting advances in many Information Retrieval applications. It enables, for instance, the development of automatic tools for the annotation of large and diverse multimedia collections. In the context of everyday sounds and online collections, the content to describe is very diverse and involves many different types of concepts, often organised in large hierarchical structures called taxonomies. This makes the task of manually annotating content arduous. In this paper, we present our user-centered development of two tools for the manual annotation of audio content from a wide range of types. We conducted a preliminary evaluation of functional prototypes involving real users. The goal is to evaluate them in a real context, engage in discussions with users, and inspire new ideas. A qualitative analysis was carried out including usability questionnaires and semi-structured interviews. This revealed interesting aspects to consider when developing tools for the manual annotation of audio content with labels drawn from large hierarchical taxonomies.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.