Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

One-Shot Item Search with Multimodal Data (1811.10969v2)

Published 27 Nov 2018 in cs.CV

Abstract: In the task of near similar image search, features from Deep Neural Network is often used to compare images and measure similarity. In the past, we only focused visual search in image dataset without text data. However, since deep neural network emerged, the performance of visual search becomes high enough to apply it in many industries from 3D data to multimodal data. Compared to the needs of multimodal search, there has not been sufficient researches. In this paper, we present a method of near similar search with image and text multimodal dataset. Earlier time, similar image search, especially when searching shopping items, treated image and text separately to search similar items and reorder the results. This regards two tasks of image search and text matching as two different tasks. Our method, however, explore the vast data to compute k-nearest neighbors using both image and text. In our experiment of similar item search, our system using multimodal data shows better performance than single data while it only increases minute computing time. For the experiment, we collected more than 15 million of accessory and six million of digital product items from online shopping websites, in which the product item comprises item images, titles, categories, and descriptions. Then we compare the performance of multimodal searching to single space searching in these datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.