Papers
Topics
Authors
Recent
2000 character limit reached

DSBI: Double-Sided Braille Image Dataset and Algorithm Evaluation for Braille Dots Detection (1811.10893v2)

Published 27 Nov 2018 in cs.CV

Abstract: Braille is an effective way for the visually impaired to learn knowledge and obtain information. Braille image recognition aims to automatically detect Braille dots in the whole Braille image. There is no available public datasets for Braille image recognition to push relevant research and evaluate algorithms. This paper constructs a large-scale Double-Sided Braille Image dataset DSBI with detailed Braille recto dots, verso dots and Braille cells annotation. To quickly annotate Braille images, an auxiliary annotation strategy is proposed, which adopts initial automatic detection of Braille dots and modifies annotation results by convenient human-computer interaction method. This labeling strategy can averagely increase label efficiency by six times for recto dots annotation in one Braille image. Braille dots detection is the core and basic step for Braille image recognition. This paper also evaluates some Braille dots detection methods on our dataset DSBI and gives the benchmark performance of recto dots detection. We have released our Braille images dataset on the GitHub website.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.