Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient non-uniform quantizer for quantized neural network targeting reconfigurable hardware (1811.10869v1)

Published 27 Nov 2018 in cs.LG and stat.ML

Abstract: Convolutional Neural Networks (CNN) has become more popular choice for various tasks such as computer vision, speech recognition and natural language processing. Thanks to their large computational capability and throughput, GPUs ,which are not power efficient and therefore does not suit low power systems such as mobile devices, are the most common platform for both training and inferencing tasks. Recent studies has shown that FPGAs can provide a good alternative to GPUs as a CNN accelerator, due to their re-configurable nature, low power and small latency. In order for FPGA-based accelerators outperform GPUs in inference task, both the parameters of the network and the activations must be quantized. While most works use uniform quantizers for both parameters and activations, it is not always the optimal one, and a non-uniform quantizer need to be considered. In this work we introduce a custom hardware-friendly approach to implement non-uniform quantizers. In addition, we use a single scale integer representation of both parameters and activations, for both training and inference. The combined method yields a hardware efficient non-uniform quantizer, fit for real-time applications. We have tested our method on CIFAR-10 and CIFAR-100 image classification datasets with ResNet-18 and VGG-like architectures, and saw little degradation in accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.