Papers
Topics
Authors
Recent
2000 character limit reached

A deep neural network to enhance prediction of 1-year mortality using echocardiographic videos of the heart (1811.10553v2)

Published 26 Nov 2018 in cs.LG, cs.AI, cs.CV, and q-bio.QM

Abstract: Predicting future clinical events helps physicians guide appropriate intervention. Machine learning has tremendous promise to assist physicians with predictions based on the discovery of complex patterns from historical data, such as large, longitudinal electronic health records (EHR). This study is a first attempt to demonstrate such capabilities using raw echocardiographic videos of the heart. We show that a large dataset of 723,754 clinically-acquired echocardiographic videos (~45 million images) linked to longitudinal follow-up data in 27,028 patients can be used to train a deep neural network to predict 1-year mortality with good accuracy (area under the curve (AUC) in an independent test set = 0.839). Prediction accuracy was further improved by adding EHR data (AUC = 0.858). Finally, we demonstrate that the trained neural network was more accurate in mortality prediction than two expert cardiologists. These results highlight the potential of neural networks to add new power to clinical predictions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.