Emergent Mind

Abstract

Named entity recognition (NER) is one of the tasks in natural language processing that can greatly benefit from the use of external knowledge sources. We propose a named entity recognition framework composed of knowledge-based feature extractors and a deep learning model including contextual word embeddings, long short-term memory (LSTM) layers and conditional random fields (CRF) inference layer. We use an entity linking module to integrate our system with Wikipedia. The combination of effective neural architecture and external resources allows us to obtain state-of-the-art results on recognition of Polish proper names. We evaluate our model on data from PolEval 2018 NER challenge on which it outperforms other methods, reducing the error rate by 22.4% compared to the winning solution. Our work shows that combining neural NER model and entity linking model with a knowledge base is more effective in recognizing named entities than using NER model alone.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.