Papers
Topics
Authors
Recent
Search
2000 character limit reached

Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference

Published 25 Nov 2018 in cs.CR | (1811.09953v1)

Abstract: Homomorphic encryption enables arbitrary computation over data while it remains encrypted. This privacy-preserving feature is attractive for machine learning, but requires significant computational time due to the large overhead of the encryption scheme. We present Faster CryptoNets, a method for efficient encrypted inference using neural networks. We develop a pruning and quantization approach that leverages sparse representations in the underlying cryptosystem to accelerate inference. We derive an optimal approximation for popular activation functions that achieves maximally-sparse encodings and minimizes approximation error. We also show how privacy-safe training techniques can be used to reduce the overhead of encrypted inference for real-world datasets by leveraging transfer learning and differential privacy. Our experiments show that our method maintains competitive accuracy and achieves a significant speedup over previous methods. This work increases the viability of deep learning systems that use homomorphic encryption to protect user privacy.

Citations (186)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.