Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PCGAN: Partition-Controlled Human Image Generation (1811.09928v1)

Published 25 Nov 2018 in cs.CV

Abstract: Human image generation is a very challenging task since it is affected by many factors. Many human image generation methods focus on generating human images conditioned on a given pose, while the generated backgrounds are often blurred.In this paper,we propose a novel Partition-Controlled GAN to generate human images according to target pose and background. Firstly, human poses in the given images are extracted, and foreground/background are partitioned for further use. Secondly, we extract and fuse appearance features, pose features and background features to generate the desired images. Experiments on Market-1501 and DeepFashion datasets show that our model not only generates realistic human images but also produce the human pose and background as we want. Extensive experiments on COCO and LIP datasets indicate the potential of our method.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.