Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Physics-aware Deep Generative Models for Creating Synthetic Microstructures (1811.09669v1)

Published 21 Nov 2018 in cond-mat.mtrl-sci, cs.LG, physics.comp-ph, and stat.ML

Abstract: A key problem in computational material science deals with understanding the effect of material distribution (i.e., microstructure) on material performance. The challenge is to synthesize microstructures, given a finite number of microstructure images, and/or some physical invariances that the microstructure exhibits. Conventional approaches are based on stochastic optimization and are computationally intensive. We introduce three generative models for the fast synthesis of binary microstructure images. The first model is a WGAN model that uses a finite number of training images to synthesize new microstructures that weakly satisfy the physical invariances respected by the original data. The second model explicitly enforces known physical invariances by replacing the traditional discriminator in a GAN with an invariance checker. Our third model combines the first two models to reconstruct microstructures that respect both explicit physics invariances as well as implicit constraints learned from the image data. We illustrate these models by reconstructing two-phase microstructures that exhibit coarsening behavior. The trained models also exhibit interesting latent variable interpolation behavior, and the results indicate considerable promise for enforcing user-defined physics constraints during microstructure synthesis.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.