Papers
Topics
Authors
Recent
2000 character limit reached

Semivariogram methods for modeling Whittle-Matérn priors in Bayesian inverse problems (1811.09446v3)

Published 23 Nov 2018 in math.NA, cs.NA, and stat.CO

Abstract: We present a new technique, based on semivariogram methodology, for obtaining point estimates for use in prior modeling for solving Bayesian inverse problems. This method requires a connection between Gaussian processes with covariance operators defined by the Mat\'ern covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We present a detailed mathematical description of this connection. We will show that there is an equivalence between these two Gaussian processes when the domain is infinite -- for us, $\mathbb{R}2$ -- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for estimating the Mat\'ern covariance parameters, which specify the Gaussian prior needed for stabilizing the inverse problem. Results are extended from the isotropic case to the anisotropic case where the correlation length in one direction is larger than another. Finally, we consider the situation where the correlation length is spatially dependent rather than constant. We implement each method in two-dimensional image inpainting test cases to show that it works on practical examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.