Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distributed Gradient Descent with Coded Partial Gradient Computations (1811.09271v1)

Published 22 Nov 2018 in cs.LG, cs.DC, cs.IT, eess.SP, math.IT, and stat.ML

Abstract: Coded computation techniques provide robustness against straggling servers in distributed computing, with the following limitations: First, they increase decoding complexity. Second, they ignore computations carried out by straggling servers; and they are typically designed to recover the full gradient, and thus, cannot provide a balance between the accuracy of the gradient and per-iteration completion time. Here we introduce a hybrid approach, called coded partial gradient computation (CPGC), that benefits from the advantages of both coded and uncoded computation schemes, and reduces both the computation time and decoding complexity.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.