Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mask R-CNN with Pyramid Attention Network for Scene Text Detection (1811.09058v1)

Published 22 Nov 2018 in cs.CV

Abstract: In this paper, we present a new Mask R-CNN based text detection approach which can robustly detect multi-oriented and curved text from natural scene images in a unified manner. To enhance the feature representation ability of Mask R-CNN for text detection tasks, we propose to use the Pyramid Attention Network (PAN) as a new backbone network of Mask R-CNN. Experiments demonstrate that PAN can suppress false alarms caused by text-like backgrounds more effectively. Our proposed approach has achieved superior performance on both multi-oriented (ICDAR-2015, ICDAR-2017 MLT) and curved (SCUT-CTW1500) text detection benchmark tasks by only using single-scale and single-model testing.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.