Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Enhanced Expressive Power and Fast Training of Neural Networks by Random Projections (1811.09054v2)

Published 22 Nov 2018 in cs.LG and stat.ML

Abstract: Random projections are able to perform dimension reduction efficiently for datasets with nonlinear low-dimensional structures. One well-known example is that random matrices embed sparse vectors into a low-dimensional subspace nearly isometrically, known as the restricted isometric property in compressed sensing. In this paper, we explore some applications of random projections in deep neural networks. We provide the expressive power of fully connected neural networks when the input data are sparse vectors or form a low-dimensional smooth manifold. We prove that the number of neurons required for approximating a Lipschitz function with a prescribed precision depends on the sparsity or the dimension of the manifold and weakly on the dimension of the input vector. The key in our proof is that random projections embed stably the set of sparse vectors or a low-dimensional smooth manifold into a low-dimensional subspace. Based on this fact, we also propose some new neural network models, where at each layer the input is first projected onto a low-dimensional subspace by a random projection and then the standard linear connection and non-linear activation are applied. In this way, the number of parameters in neural networks is significantly reduced, and therefore the training of neural networks can be accelerated without too much performance loss.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.