Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MS-UNIQUE: Multi-model and Sharpness-weighted Unsupervised Image Quality Estimation (1811.08947v1)

Published 21 Nov 2018 in eess.IV, cs.CV, cs.MM, and eess.SP

Abstract: In this paper, we train independent linear decoder models to estimate the perceived quality of images. More specifically, we calculate the responses of individual non-overlapping image patches to each of the decoders and scale these responses based on the sharpness characteristics of filter set. We use multiple linear decoders to capture different abstraction levels of the image patches. Training each model is carried out on 100,000 image patches from the ImageNet database in an unsupervised fashion. Color space selection and ZCA Whitening are performed over these patches to enhance the descriptiveness of the data. The proposed quality estimator is tested on the LIVE and the TID 2013 image quality assessment databases. Performance of the proposed method is compared against eleven other state of the art methods in terms of accuracy, consistency, linearity, and monotonic behavior. Based on experimental results, the proposed method is generally among the top performing quality estimators in all categories.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.