Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CapsAcc: An Efficient Hardware Accelerator for CapsuleNets with Data Reuse (1811.08932v1)

Published 2 Nov 2018 in cs.DC and cs.AR

Abstract: Deep Neural Networks (DNNs) have been widely deployed for many Machine Learning applications. Recently, CapsuleNets have overtaken traditional DNNs, because of their improved generalization ability due to the multi-dimensional capsules, in contrast to the single-dimensional neurons. Consequently, CapsuleNets also require extremely intense matrix computations, making it a gigantic challenge to achieve high performance. In this paper, we propose CapsAcc, the first specialized CMOS-based hardware architecture to perform CapsuleNets inference with high performance and energy efficiency. State-of-the-art convolutional DNN accelerators would not work efficiently for CapsuleNets, as their designs do not account for key operations involved in CapsuleNets, like squashing and dynamic routing, as well as multi-dimensional matrix processing. Our CapsAcc architecture targets this problem and achieves significant improvements, when compared to an optimized GPU implementation. Our architecture exploits the massive parallelism by flexibly feeding the data to a specialized systolic array according to the operations required in different layers. It also avoids extensive load and store operations on the on-chip memory, by reusing the data when possible. We further optimize the routing algorithm to reduce the computations needed at this stage. We synthesized the complete CapsAcc architecture in a 32nm CMOS technology using Synopsys design tools, and evaluated it for the MNIST benchmark (as also done by the original CapsuleNet paper) to ensure consistent and fair comparisons. This work enables highly-efficient CapsuleNets inference on embedded platforms.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.