Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Surrogate-assisted parallel tempering for Bayesian neural learning (1811.08687v3)

Published 21 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Due to the need for robust uncertainty quantification, Bayesian neural learning has gained attention in the era of deep learning and big data. Markov Chain Monte-Carlo (MCMC) methods typically implement Bayesian inference which faces several challenges given a large number of parameters, complex and multimodal posterior distributions, and computational complexity of large neural network models. Parallel tempering MCMC addresses some of these limitations given that they can sample multimodal posterior distributions and utilize high-performance computing. However, certain challenges remain given large neural network models and big data. Surrogate-assisted optimization features the estimation of an objective function for models which are computationally expensive. In this paper, we address the inefficiency of parallel tempering MCMC for large-scale problems by combining parallel computing features with surrogate assisted likelihood estimation that describes the plausibility of a model parameter value, given specific observed data. Hence, we present surrogate-assisted parallel tempering for Bayesian neural learning for simple to computationally expensive models. Our results demonstrate that the methodology significantly lowers the computational cost while maintaining quality in decision making with Bayesian neural networks. The method has applications for a Bayesian inversion and uncertainty quantification for a broad range of numerical models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube