Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Surrogate-assisted parallel tempering for Bayesian neural learning (1811.08687v3)

Published 21 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Due to the need for robust uncertainty quantification, Bayesian neural learning has gained attention in the era of deep learning and big data. Markov Chain Monte-Carlo (MCMC) methods typically implement Bayesian inference which faces several challenges given a large number of parameters, complex and multimodal posterior distributions, and computational complexity of large neural network models. Parallel tempering MCMC addresses some of these limitations given that they can sample multimodal posterior distributions and utilize high-performance computing. However, certain challenges remain given large neural network models and big data. Surrogate-assisted optimization features the estimation of an objective function for models which are computationally expensive. In this paper, we address the inefficiency of parallel tempering MCMC for large-scale problems by combining parallel computing features with surrogate assisted likelihood estimation that describes the plausibility of a model parameter value, given specific observed data. Hence, we present surrogate-assisted parallel tempering for Bayesian neural learning for simple to computationally expensive models. Our results demonstrate that the methodology significantly lowers the computational cost while maintaining quality in decision making with Bayesian neural networks. The method has applications for a Bayesian inversion and uncertainty quantification for a broad range of numerical models.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.