Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A state-space approach to sparse dynamic network reconstruction (1811.08677v1)

Published 21 Nov 2018 in cs.SY

Abstract: Dynamic network reconstruction has been shown to be challenging due to the requirements on sparse network structures and network identifiability. The direct parametric method (e.g., using ARX models) requires a large amount of parameters in model selection. Amongst the parametric models, only a restricted class can easily be used to address network sparsity without rendering the optimization problem intractable. To overcome these problems, this paper presents a state-space-based method, which significantly reduces the number of unknown parameters in model selection. Furthermore, we avoid various difficulties arising in gradient computation by using the Expectation Minimization (EM) algorithm instead. To enhance network sparsity, the prior distribution is constructed by using the Sparse Bayesian Learning (SBL) approach in the M-step. To solve the SBL problem, another EM algorithm is embedded, where we impose conditions on network identifiability in each iteration. In a sum, this paper provides a solution to reconstruct dynamic networks that avoids the difficulties inherent to gradient computation and simplifies the model selection.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.