Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentiable Consistency Constraints for Improved Deep Speech Enhancement (1811.08521v1)

Published 20 Nov 2018 in cs.SD and eess.AS

Abstract: In recent years, deep networks have led to dramatic improvements in speech enhancement by framing it as a data-driven pattern recognition problem. In many modern enhancement systems, large amounts of data are used to train a deep network to estimate masks for complex-valued short-time Fourier transforms (STFTs) to suppress noise and preserve speech. However, current masking approaches often neglect two important constraints: STFT consistency and mixture consistency. Without STFT consistency, the system's output is not necessarily the STFT of a time-domain signal, and without mixture consistency, the sum of the estimated sources does not necessarily equal the input mixture. Furthermore, the only previous approaches that apply mixture consistency use real-valued masks; mixture consistency has been ignored for complex-valued masks. In this paper, we show that STFT consistency and mixture consistency can be jointly imposed by adding simple differentiable projection layers to the enhancement network. These layers are compatible with real or complex-valued masks. Using both of these constraints with complex-valued masks provides a 0.7 dB increase in scale-invariant signal-to-distortion ratio (SI-SDR) on a large dataset of speech corrupted by a wide variety of nonstationary noise across a range of input SNRs.

Citations (118)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.