Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stable Opponent Shaping in Differentiable Games (1811.08469v3)

Published 20 Nov 2018 in cs.MA, cs.AI, and cs.LG

Abstract: A growing number of learning methods are actually differentiable games whose players optimise multiple, interdependent objectives in parallel -- from GANs and intrinsic curiosity to multi-agent RL. Opponent shaping is a powerful approach to improve learning dynamics in these games, accounting for player influence on others' updates. Learning with Opponent-Learning Awareness (LOLA) is a recent algorithm that exploits this response and leads to cooperation in settings like the Iterated Prisoner's Dilemma. Although experimentally successful, we show that LOLA agents can exhibit 'arrogant' behaviour directly at odds with convergence. In fact, remarkably few algorithms have theoretical guarantees applying across all (n-player, non-convex) games. In this paper we present Stable Opponent Shaping (SOS), a new method that interpolates between LOLA and a stable variant named LookAhead. We prove that LookAhead converges locally to equilibria and avoids strict saddles in all differentiable games. SOS inherits these essential guarantees, while also shaping the learning of opponents and consistently either matching or outperforming LOLA experimentally.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.