Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

WEST: Word Encoded Sequence Transducers (1811.08417v1)

Published 20 Nov 2018 in cs.LG, cs.CL, and stat.ML

Abstract: Most of the parameters in large vocabulary models are used in embedding layer to map categorical features to vectors and in softmax layer for classification weights. This is a bottle-neck in memory constraint on-device training applications like federated learning and on-device inference applications like automatic speech recognition (ASR). One way of compressing the embedding and softmax layers is to substitute larger units such as words with smaller sub-units such as characters. However, often the sub-unit models perform poorly compared to the larger unit models. We propose WEST, an algorithm for encoding categorical features and output classes with a sequence of random or domain dependent sub-units and demonstrate that this transduction can lead to significant compression without compromising performance. WEST bridges the gap between larger unit and sub-unit models and can be interpreted as a MaxEnt model over sub-unit features, which can be of independent interest.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.