Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Convolutional Neural Network for Plant Seedlings Classification (1811.08404v1)

Published 20 Nov 2018 in cs.CV

Abstract: Agriculture is vital for human survival and remains a major driver of several economies around the world; more so in underdeveloped and developing economies. With increasing demand for food and cash crops, due to a growing global population and the challenges posed by climate change, there is a pressing need to increase farm outputs while incurring minimal costs. Previous machine vision technologies developed for selective weeding have faced the challenge of reliable and accurate weed detection. We present approaches for plant seedlings classification with a dataset that contains 4,275 images of approximately 960 unique plants belonging to 12 species at several growth stages. We compare the performances of two traditional algorithms and a Convolutional Neural Network (CNN), a deep learning technique widely applied to image recognition, for this task. Our findings show that CNN-driven seedling classification applications when used in farming automation has the potential to optimize crop yield and improve productivity and efficiency when designed appropriately.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.