Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Locally Private Gaussian Estimation (1811.08382v2)

Published 20 Nov 2018 in cs.LG and stat.ML

Abstract: We study a basic private estimation problem: each of $n$ users draws a single i.i.d. sample from an unknown Gaussian distribution, and the goal is to estimate the mean of this Gaussian distribution while satisfying local differential privacy for each user. Informally, local differential privacy requires that each data point is individually and independently privatized before it is passed to a learning algorithm. Locally private Gaussian estimation is therefore difficult because the data domain is unbounded: users may draw arbitrarily different inputs, but local differential privacy nonetheless mandates that different users have (worst-case) similar privatized output distributions. We provide both adaptive two-round solutions and nonadaptive one-round solutions for locally private Gaussian estimation. We then partially match these upper bounds with an information-theoretic lower bound. This lower bound shows that our accuracy guarantees are tight up to logarithmic factors for all sequentially interactive $(\varepsilon,\delta)$-locally private protocols.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.