Papers
Topics
Authors
Recent
2000 character limit reached

Study of Multi-Step Knowledge-Aided Iterative Nested MUSIC for Direction Finding (1811.08306v1)

Published 19 Nov 2018 in eess.SP, cs.IT, and math.IT

Abstract: In this work, we propose a subspace-based algorithm for direction-of-arrival (DOA) estimation applied to the signals impinging on a two-level nested array, referred to as multi-step knowledge-aided iterative nested MUSIC method (MS-KAI-Nested-MUSIC), which significantly improves the accuracy of the original Nested-MUSIC. Differently from existing knowledge-aided methods applied to uniform linear arrays (ULAs), which make use of available known DOAs to improve the estimation of the covariance matrix of the input data, the proposed Multi-Step KAI-Nested-MU employs knowledge of the structure of the augmented sample covariance matrix, which is obtained by exploiting the difference co-array structure covariance matrix, and its perturbation terms and the gradual incorporation of prior knowledge, which is obtained on line. The effectiveness of the proposed technique can be noticed by simulations focusing on uncorrelated closely-spaced sources.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.