Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature exploration for almost zero-resource ASR-free keyword spotting using a multilingual bottleneck extractor and correspondence autoencoders (1811.08284v2)

Published 14 Nov 2018 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: We compare features for dynamic time warping (DTW) when used to bootstrap keyword spotting (KWS) in an almost zero-resource setting. Such quickly-deployable systems aim to support United Nations (UN) humanitarian relief efforts in parts of Africa with severely under-resourced languages. Our objective is to identify acoustic features that provide acceptable KWS performance in such environments. As supervised resource, we restrict ourselves to a small, easily acquired and independently compiled set of isolated keywords. For feature extraction, a multilingual bottleneck feature (BNF) extractor, trained on well-resourced out-of-domain languages, is integrated with a correspondence autoencoder (CAE) trained on extremely sparse in-domain data. On their own, BNFs and CAE features are shown to achieve a more than 2% absolute performance improvement over baseline MFCCs. However, by using BNFs as input to the CAE, even better performance is achieved, with a more than 11% absolute improvement in ROC AUC over MFCCs and more than twice as many top-10 retrievals for two evaluated languages, English and Luganda. We conclude that integrating BNFs with the CAE allows both large out-of-domain and sparse in-domain resources to be exploited for improved ASR-free keyword spotting.

Citations (2)

Summary

We haven't generated a summary for this paper yet.