Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scalable Logo Recognition using Proxies (1811.08009v1)

Published 19 Nov 2018 in cs.CV and cs.LG

Abstract: Logo recognition is the task of identifying and classifying logos. Logo recognition is a challenging problem as there is no clear definition of a logo and there are huge variations of logos, brands and re-training to cover every variation is impractical. In this paper, we formulate logo recognition as a few-shot object detection problem. The two main components in our pipeline are universal logo detector and few-shot logo recognizer. The universal logo detector is a class-agnostic deep object detector network which tries to learn the characteristics of what makes a logo. It predicts bounding boxes on likely logo regions. These logo regions are then classified by logo recognizer using nearest neighbor search, trained by triplet loss using proxies. We also annotated a first of its kind product logo dataset containing 2000 logos from 295K images collected from Amazon called PL2K. Our pipeline achieves 97% recall with 0.6 mAP on PL2K test dataset and state-of-the-art 0.565 mAP on the publicly available FlickrLogos-32 test set without fine-tuning.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com