Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saliency Supervision: An Intuitive and Effective Approach for Pain Intensity Regression (1811.07987v1)

Published 16 Nov 2018 in cs.CV and cs.AI

Abstract: Getting pain intensity from face images is an important problem in autonomous nursing systems. However, due to the limitation in data sources and the subjectiveness in pain intensity values, it is hard to adopt modern deep neural networks for this problem without domain-specific auxiliary design. Inspired by human vision priori, we propose a novel approach called saliency supervision, where we directly regularize deep networks to focus on facial area that is discriminative for pain regression. Through alternative training between saliency supervision and global loss, our method can learn sparse and robust features, which is proved helpful for pain intensity regression. We verified saliency supervision with face-verification network backbone on the widely-used dataset, and achieved state-of-art performance without bells and whistles. Our saliency supervision is intuitive in spirit, yet effective in performance. We believe such saliency supervision is essential in dealing with ill-posed datasets, and has potential in a wide range of vision tasks.

Summary

We haven't generated a summary for this paper yet.