Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Past, Present, and Future Approaches Using Computer Vision for Animal Re-Identification from Camera Trap Data (1811.07749v1)

Published 19 Nov 2018 in cs.CV

Abstract: The ability of a researcher to re-identify (re-ID) an individual animal upon re-encounter is fundamental for addressing a broad range of questions in the study of ecosystem function, community and population dynamics, and behavioural ecology. In this review, we describe a brief history of camera traps for re-ID, present a collection of computer vision feature engineering methodologies previously used for animal re-ID, provide an introduction to the underlying mechanisms of deep learning relevant to animal re-ID, highlight the success of deep learning methods for human re-ID, describe the few ecological studies currently utilizing deep learning for camera trap analyses, and our predictions for near future methodologies based on the rapid development of deep learning methods. By utilizing novel deep learning methods for object detection and similarity comparisons, ecologists can extract animals from an image/video data and train deep learning classifiers to re-ID animal individuals beyond the capabilities of a human observer. This methodology will allow ecologists with camera/video trap data to re-identify individuals that exit and re-enter the camera frame. Our expectation is that this is just the beginning of a major trend that could stand to revolutionize the analysis of camera trap data and, ultimately, our approach to animal ecology.

Citations (147)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube