Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Cyclic bent functions and their applications in codes, codebooks, designs, MUBs and sequences (1811.07725v1)

Published 19 Nov 2018 in cs.IT and math.IT

Abstract: Let $m$ be an even positive integer. A Boolean bent function $f$ on $\GF{m-1} \times \GF {}$ is called a \emph{cyclic bent function} if for any $a\neq b\in \GF {m-1}$ and $\epsilon \in \GF{}$, $f(ax_1,x_2)+f(bx_1,x_2+\epsilon)$ is always bent, where $x_1\in \GF {m-1}, x_2 \in \GF {}$. Cyclic bent functions look extremely rare. This paper focuses on cyclic bent functions on $\GF {m-1} \times \GF {}$ and their applications. The first objective of this paper is to construct a new class of cyclic bent functions, which includes all known constructions of cyclic bent functions as special cases. The second objective is to use cyclic bent functions to construct good mutually unbiased bases (MUBs), codebooks and sequence families. The third objective is to study cyclic semi-bent functions and their applications. The fourth objective is to present a family of binary codes containing the Kerdock code as a special case, and describe their support designs. The results of this paper show that cyclic bent functions and cyclic semi-bent functions have nice applications in several fields such as symmetric cryptography, quantum physics, compressed sensing and CDMA communication.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.