Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stable Gaussian Process based Tracking Control of Lagrangian Systems (1811.07711v1)

Published 16 Nov 2018 in cs.SY

Abstract: High performance tracking control can only be achieved if a good model of the dynamics is available. However, such a model is often difficult to obtain from first order physics only. In this paper, we develop a data-driven control law that ensures closed loop stability of Lagrangian systems. For this purpose, we use Gaussian Process regression for the feed-forward compensation of the unknown dynamics of the system. The gains of the feedback part are adapted based on the uncertainty of the learned model. Thus, the feedback gains are kept low as long as the learned model describes the true system sufficiently precisely. We show how to select a suitable gain adaption law that incorporates the uncertainty of the model to guarantee a globally bounded tracking error. A simulation with a robot manipulator demonstrates the efficacy of the proposed control law.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.