Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stable Gaussian Process based Tracking Control of Lagrangian Systems (1811.07711v1)

Published 16 Nov 2018 in cs.SY

Abstract: High performance tracking control can only be achieved if a good model of the dynamics is available. However, such a model is often difficult to obtain from first order physics only. In this paper, we develop a data-driven control law that ensures closed loop stability of Lagrangian systems. For this purpose, we use Gaussian Process regression for the feed-forward compensation of the unknown dynamics of the system. The gains of the feedback part are adapted based on the uncertainty of the learned model. Thus, the feedback gains are kept low as long as the learned model describes the true system sufficiently precisely. We show how to select a suitable gain adaption law that incorporates the uncertainty of the model to guarantee a globally bounded tracking error. A simulation with a robot manipulator demonstrates the efficacy of the proposed control law.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.