Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast submodular maximization subject to k-extendible system constraints (1811.07673v1)

Published 19 Nov 2018 in cs.DS

Abstract: As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-negative submodular objective functions subject to $k$-extendible system constraints. Combining the sampling process and the decreasing threshold strategy, our algorithm Sample Decreasing Threshold Greedy Algorithm (SDTGA) obtains an expected approximation guarantee of ($p-\epsilon$) for monotone submodular functions and of ($p(1-p)-\epsilon$) for non-monotone cases with expected computational complexity of only $O(\frac{pn}{\epsilon}\ln\frac{r}{\epsilon})$, where $r$ is the largest size of the feasible solutions, $0<p \leq \frac{1}{1+k}$ is the sampling probability and $0< \epsilon < p$. If we fix the sampling probability $p$ as $\frac{1}{1+k}$, we get the best approximation ratios for both monotone and non-monotone submodular functions which are $(\frac{1}{1+k}-\epsilon)$ and $(\frac{k}{(1+k)2}-\epsilon)$ respectively. While the parameter $\epsilon$ exists for the trade-off between the approximation ratio and the time complexity. Therefore, our algorithm can handle larger scale of submodular maximization problems than existing algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.