Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast submodular maximization subject to k-extendible system constraints (1811.07673v1)

Published 19 Nov 2018 in cs.DS

Abstract: As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-negative submodular objective functions subject to $k$-extendible system constraints. Combining the sampling process and the decreasing threshold strategy, our algorithm Sample Decreasing Threshold Greedy Algorithm (SDTGA) obtains an expected approximation guarantee of ($p-\epsilon$) for monotone submodular functions and of ($p(1-p)-\epsilon$) for non-monotone cases with expected computational complexity of only $O(\frac{pn}{\epsilon}\ln\frac{r}{\epsilon})$, where $r$ is the largest size of the feasible solutions, $0<p \leq \frac{1}{1+k}$ is the sampling probability and $0< \epsilon < p$. If we fix the sampling probability $p$ as $\frac{1}{1+k}$, we get the best approximation ratios for both monotone and non-monotone submodular functions which are $(\frac{1}{1+k}-\epsilon)$ and $(\frac{k}{(1+k)2}-\epsilon)$ respectively. While the parameter $\epsilon$ exists for the trade-off between the approximation ratio and the time complexity. Therefore, our algorithm can handle larger scale of submodular maximization problems than existing algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.