Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Switch-based Active Deep Dyna-Q: Efficient Adaptive Planning for Task-Completion Dialogue Policy Learning (1811.07550v1)

Published 19 Nov 2018 in cs.CL, cs.AI, cs.LG, and cs.NE

Abstract: Training task-completion dialogue agents with reinforcement learning usually requires a large number of real user experiences. The Dyna-Q algorithm extends Q-learning by integrating a world model, and thus can effectively boost training efficiency using simulated experiences generated by the world model. The effectiveness of Dyna-Q, however, depends on the quality of the world model - or implicitly, the pre-specified ratio of real vs. simulated experiences used for Q-learning. To this end, we extend the recently proposed Deep Dyna-Q (DDQ) framework by integrating a switcher that automatically determines whether to use a real or simulated experience for Q-learning. Furthermore, we explore the use of active learning for improving sample efficiency, by encouraging the world model to generate simulated experiences in the state-action space where the agent has not (fully) explored. Our results show that by combining switcher and active learning, the new framework named as Switch-based Active Deep Dyna-Q (Switch-DDQ), leads to significant improvement over DDQ and Q-learning baselines in both simulation and human evaluations.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.