Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Pretrained DenseNet Encoder for Brain Tumor Segmentation (1811.07542v1)

Published 19 Nov 2018 in cs.CV

Abstract: This article presents a convolutional neural network for the automatic segmentation of brain tumors in multimodal 3D MR images based on a U-net architecture.We evaluate the use of a densely connected convolutional network encoder (DenseNet) which was pretrained on the ImageNet data set. We detail two network architectures that can take into account multiple 3D images as inputs. This work aims to identify if a generic pretrained network can be used for very specific medical applications where the target data differ both in the number of spatial dimensions as well as in the number of inputs channels. Moreover in order to regularize this transfer learning task we only train the decoder part of the U-net architecture. We evaluate the effectiveness of the proposed approach on the BRATS 2018 segmentation challenge where we obtained dice scores of 0.79, 0.90, 0.85 and 95/% Hausdorff distance of 2.9mm, 3.95mm, and 6.48mm for enhanced tumor core, whole tumor and tumor core respectively on the validation set. This scores degrades to 0.77, 0.88, 0.78 and 95 /% Hausdorff distance of 3.6mm, 5.72mm, and 5.83mm on the testing set.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)