Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FotonNet: A HW-Efficient Object Detection System Using 3D-Depth Segmentation and 2D-DNN Classifier (1811.07493v1)

Published 19 Nov 2018 in cs.CV

Abstract: Object detection and classification is one of the most important computer vision problems. Ever since the introduction of deep learning \cite{krizhevsky2012imagenet}, we have witnessed a dramatic increase in the accuracy of this object detection problem. However, most of these improvements have occurred using conventional 2D image processing. Recently, low-cost 3D-image sensors, such as the Microsoft Kinect (Time-of-Flight) or the Apple FaceID (Structured-Light), can provide 3D-depth or point cloud data that can be added to a convolutional neural network, acting as an extra set of dimensions. In our proposed approach, we introduce a new 2D + 3D system that takes the 3D-data to determine the object region followed by any conventional 2D-DNN, such as AlexNet. In this method, our approach can easily dissociate the information collection from the Point Cloud and 2D-Image data and combine both operations later. Hence, our system can use any existing trained 2D network on a large image dataset, and does not require a large 3D-depth dataset for new training. Experimental object detection results across 30 images show an accuracy of 0.67, versus 0.54 and 0.51 for RCNN and YOLO, respectively.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.