Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Denoising and Completion of Structured Low-Rank Matrices via Iteratively Reweighted Least Squares (1811.07472v1)

Published 19 Nov 2018 in math.OC, cs.IT, and math.IT

Abstract: We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes an objective based on a non-convex surrogate of the rank by solving a sequence of quadratic problems. Our strategy combines computational efficiency, as it operates on a lower dimensional generator space of the structured matrices, with high statistical accuracy which can be observed in experiments on hard estimation and completion tasks. Our experiments show that the proposed algorithm StrucHMIRLS exhibits an empirical recovery probability close to 1 from fewer samples than the state-of-the-art in a Hankel matrix completion task arising from the problem of spectral super-resolution of badly separated frequencies. Furthermore, we explain how the proposed algorithm for structured low-rank recovery can be used as preprocessing step for improved robustness in frequency or line spectrum estimation problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.