Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

RGB-based 3D Hand Pose Estimation via Privileged Learning with Depth Images (1811.07376v1)

Published 18 Nov 2018 in cs.CV

Abstract: This paper proposes a method for hand pose estimation from RGB images that uses both external large-scale depth image datasets and paired depth and RGB images as privileged information at training time. We show that providing depth information during training significantly improves performance of pose estimation from RGB images during testing. We explore different ways of using this privileged information: (1) using depth data to initially train a depth-based network, (2) using the features from the depth-based network of the paired depth images to constrain mid-level RGB network weights, and (3) using the foreground mask, obtained from the depth data, to suppress the responses from the background area. By using paired RGB and depth images, we are able to supervise the RGB-based network to learn middle layer features that mimic that of the corresponding depth-based network, which is trained on large-scale, accurately annotated depth data. During testing, when only an RGB image is available, our method produces accurate 3D hand pose predictions. Our method is also tested on 2D hand pose estimation. Experiments on three public datasets show that the method outperforms the state-of-the-art methods for hand pose estimation using RGB image input.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube