Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Transfer Learning with Deep CNNs for Gender Recognition and Age Estimation (1811.07344v1)

Published 18 Nov 2018 in cs.CV

Abstract: In this project, competition-winning deep neural networks with pretrained weights are used for image-based gender recognition and age estimation. Transfer learning is explored using both VGG19 and VGGFace pretrained models by testing the effects of changes in various design schemes and training parameters in order to improve prediction accuracy. Training techniques such as input standardization, data augmentation, and label distribution age encoding are compared. Finally, a hierarchy of deep CNNs is tested that first classifies subjects by gender, and then uses separate male and female age models to predict age. A gender recognition accuracy of 98.7% and an MAE of 4.1 years is achieved. This paper shows that, with proper training techniques, good results can be obtained by retasking existing convolutional filters towards a new purpose.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.