Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Determinantal Point Processes (1811.07245v3)

Published 17 Nov 2018 in stat.ML and cs.LG

Abstract: Determinantal point processes (DPPs) have attracted significant attention as an elegant model that is able to capture the balance between quality and diversity within sets. DPPs are parameterized by a positive semi-definite kernel matrix. While DPPs have substantial expressive power, they are fundamentally limited by the parameterization of the kernel matrix and their inability to capture nonlinear interactions between items within sets. We present the deep DPP model as way to address these limitations, by using a deep feed-forward neural network to learn the kernel matrix. In addition to allowing us to capture nonlinear item interactions, the deep DPP also allows easy incorporation of item metadata into DPP learning. Since the learning target is the DPP kernel matrix, the deep DPP allows us to use existing DPP algorithms for efficient learning, sampling, and prediction. Through an evaluation on several real-world datasets, we show experimentally that the deep DPP can provide a considerable improvement in the predictive performance of DPPs, while also outperforming strong baseline models in many cases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.