Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Revisiting Image-Language Networks for Open-ended Phrase Detection (1811.07212v3)

Published 17 Nov 2018 in cs.CV

Abstract: Most existing work that grounds natural language phrases in images starts with the assumption that the phrase in question is relevant to the image. In this paper we address a more realistic version of the natural language grounding task where we must both identify whether the phrase is relevant to an image and localize the phrase. This can also be viewed as a generalization of object detection to an open-ended vocabulary, introducing elements of few- and zero-shot detection. We propose an approach for this task that extends Faster R-CNN to relate image regions and phrases. By carefully initializing the classification layers of our network using canonical correlation analysis (CCA), we encourage a solution that is more discerning when reasoning between similar phrases, resulting in over double the performance compared to a naive adaptation on three popular phrase grounding datasets, Flickr30K Entities, ReferIt Game, and Visual Genome, with test-time phrase vocabulary sizes of 5K, 32K, and 159K, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.