Papers
Topics
Authors
Recent
2000 character limit reached

Explicit Spatiotemporal Joint Relation Learning for Tracking Human Pose (1811.07123v3)

Published 17 Nov 2018 in cs.CV

Abstract: We present a method for human pose tracking that is based on learning spatiotemporal relationships among joints. Beyond generating the heatmap of a joint in a given frame, our system also learns to predict the offset of the joint from a neighboring joint in the frame. Additionally, it is trained to predict the displacement of the joint from its position in the previous frame, in a manner that can account for possibly changing joint appearance, unlike optical flow. These relational cues in the spatial domain and temporal domain are inferred in a robust manner by attending only to relevant areas in the video frames. By explicitly learning and exploiting these joint relationships, our system achieves state-of-the-art performance on standard benchmarks for various pose tracking tasks including 3D body pose tracking in RGB video, 3D hand pose tracking in depth sequences, and 3D hand gesture tracking in RGB video.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.