Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Symmetry constrained machine learning (1811.07051v2)

Published 16 Nov 2018 in stat.ML, cs.LG, and physics.data-an

Abstract: Symmetry, a central concept in understanding the laws of nature, has been used for centuries in physics, mathematics, and chemistry, to help make mathematical models tractable. Yet, despite its power, symmetry has not been used extensively in machine learning, until rather recently. In this article we show a general way to incorporate symmetries into machine learning models. We demonstrate this with a detailed analysis on a rather simple real world machine learning system - a neural network for classifying handwritten digits, lacking bias terms for every neuron. We demonstrate that ignoring symmetries can have dire over-fitting consequences, and that incorporating symmetry into the model reduces over-fitting, while at the same time reducing complexity, ultimately requiring less training data, and taking less time and resources to train.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube