Papers
Topics
Authors
Recent
2000 character limit reached

Towards Training Recurrent Neural Networks for Lifelong Learning (1811.07017v3)

Published 16 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Catastrophic forgetting and capacity saturation are the central challenges of any parametric lifelong learning system. In this work, we study these challenges in the context of sequential supervised learning with an emphasis on recurrent neural networks. To evaluate the models in the lifelong learning setting, we propose a curriculum-based, simple, and intuitive benchmark where the models are trained on tasks with increasing levels of difficulty. To measure the impact of catastrophic forgetting, the model is tested on all the previous tasks as it completes any task. As a step towards developing true lifelong learning systems, we unify Gradient Episodic Memory (a catastrophic forgetting alleviation approach) and Net2Net(a capacity expansion approach). Both these models are proposed in the context of feedforward networks and we evaluate the feasibility of using them for recurrent networks. Evaluation on the proposed benchmark shows that the unified model is more suitable than the constituent models for lifelong learning setting.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.