Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Spanner for the Day After (1811.06898v3)

Published 16 Nov 2018 in cs.CG

Abstract: We show how to construct $(1+\varepsilon)$-spanner over a set $P$ of $n$ points in $\mathbb{R}d$ that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $\vartheta,\varepsilon \in (0,1)$, the computed spanner $G$ has $ O\bigl(\varepsilon{-c} \vartheta{-6} n \log n (\log\log n)6 \bigr) $ edges, where $c= O(d)$. Furthermore, for any $k$, and any deleted set $B \subseteq P$ of $k$ points, the residual graph $G \setminus B$ is $(1+\varepsilon)$-spanner for all the points of $P$ except for $(1+\vartheta)k$ of them. No previous constructions, beyond the trivial clique with $O(n2)$ edges, were known such that only a tiny additional fraction (i.e., $\vartheta$) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.