Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automatic Text Document Summarization using Semantic-based Analysis (1811.06567v1)

Published 15 Nov 2018 in cs.IR and cs.CL

Abstract: Since the advent of the web, the amount of data on wen has been increased several million folds. In recent years web data generated is more than data stored for years. One important data format is text. To answer user queries over the internet, and to overcome the problem of information overload one possible solution is text document summarization. This not only reduces query access time, but also optimize the document results according to specific users requirements. Summarization of text document can be categorized as abstractive and extractive. Most of the work has been done in the direction of Extractive summarization. Extractive summarized result is a subset of original documents with the objective of more content coverage and lea redundancy. Our work is based on Extractive approaches. In the first approach, we are using some statistical features and semantic-based features. To include sentiment as a feature is an idea cached from a view that emotion plays an important role. It effectively conveys a message. So, it may play a vital role in text document summarization.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)