Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adversarial Examples from Cryptographic Pseudo-Random Generators (1811.06418v1)

Published 15 Nov 2018 in cs.LG, cs.CC, cs.CR, and stat.ML

Abstract: In our recent work (Bubeck, Price, Razenshteyn, arXiv:1805.10204) we argued that adversarial examples in machine learning might be due to an inherent computational hardness of the problem. More precisely, we constructed a binary classification task for which (i) a robust classifier exists; yet no non-trivial accuracy can be obtained with an efficient algorithm in (ii) the statistical query model. In the present paper we significantly strengthen both (i) and (ii): we now construct a task which admits (i') a maximally robust classifier (that is it can tolerate perturbations of size comparable to the size of the examples themselves); and moreover we prove computational hardness of learning this task under (ii') a standard cryptographic assumption.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.