Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Template Matching for Offline Handwritten Chinese Character Recognition (1811.06347v1)

Published 15 Nov 2018 in cs.CV

Abstract: Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks (CNN) provide an end-to-end solution in handwritten Chinese character recognition (HCCR) with great success. However, the process of learning discriminative features for image recognition is difficult in cases where little data is available. In this paper, we propose a novel method for learning siamese neural network which employ a special structure to predict the similarity between handwritten Chinese characters and template images. The optimization of siamese neural network can be treated as a simple binary classification problem. When the training process has been finished, the powerful discriminative features help us to generalize the predictive power not just to new data, but to entirely new classes that never appear in the training set. Experiments performed on the ICDAR-2013 offline HCCR datasets have shown that the proposed method has a very promising generalization ability to the new classes that never appear in the training set.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.