Papers
Topics
Authors
Recent
2000 character limit reached

Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector (1811.06295v3)

Published 15 Nov 2018 in cs.CV

Abstract: Different layers of deep convolutional neural networks(CNNs) can encode different-level information. High-layer features always contain more semantic information, and low-layer features contain more detail information. However, low-layer features suffer from the background clutter and semantic ambiguity. During visual recognition, the feature combination of the low-layer and high-level features plays an important role in context modulation. If directly combining the high-layer and low-layer features, the background clutter and semantic ambiguity may be caused due to the introduction of detailed information. In this paper, we propose a general network architecture to concatenate CNN features of different layers in a simple and effective way, called Selective Feature Connection Mechanism (SFCM). Low-level features are selectively linked to high-level features with a feature selector which is generated by high-level features. The proposed connection mechanism can effectively overcome the above-mentioned drawbacks. We demonstrate the effectiveness, superiority, and universal applicability of this method on multiple challenging computer vision tasks, including image classification, scene text detection, and image-to-image translation.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.