Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Deep Learning in the Wavelet Domain (1811.06115v1)

Published 14 Nov 2018 in cs.CV

Abstract: This paper examines the possibility of, and the possible advantages to learning the filters of convolutional neural networks (CNNs) for image analysis in the wavelet domain. We are stimulated by both Mallat's scattering transform and the idea of filtering in the Fourier domain. It is important to explore new spaces in which to learn, as these may provide inherent advantages that are not available in the pixel space. However, the scattering transform is limited by its inability to learn in between scattering orders, and any Fourier domain filtering is limited by the large number of filter parameters needed to get localized filters. Instead we consider filtering in the wavelet domain with learnable filters. The wavelet space allows us to have local, smooth filters with far fewer parameters, and learnability can give us flexibility. We present a novel layer which takes CNN activations into the wavelet space, learns parameters and returns to the pixel space. This allows it to be easily dropped in to any neural network without affecting the structure. As part of this work, we show how to pass gradients through a multirate system and give preliminary results.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.