Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Domain Randomization for Scene-Specific Car Detection and Pose Estimation (1811.05939v1)

Published 14 Nov 2018 in cs.CV

Abstract: We address the issue of domain gap when making use of synthetic data to train a scene-specific object detector and pose estimator. While previous works have shown that the constraints of learning a scene-specific model can be leveraged to create geometrically and photometrically consistent synthetic data, care must be taken to design synthetic content which is as close as possible to the real-world data distribution. In this work, we propose to solve domain gap through the use of appearance randomization to generate a wide range of synthetic objects to span the space of realistic images for training. An ablation study of our results is presented to delineate the individual contribution of different components in the randomization process. We evaluate our method on VIRAT, UA-DETRAC, EPFL-Car datasets, where we demonstrate that using scene specific domain randomized synthetic data is better than fine-tuning off-the-shelf models on limited real data.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.